Abstract

N-methyl- d-aspartate (NMDA) receptors are important target sites of alcohol action in the central nervous system. Alcohol inhibits NMDA receptor current by an action on ion channel gating, apparently through a direct action on a region of the NMDA receptor accessible from the extracellular environment. Our previous studies have revealed an important role for a methionine residue (Met823) in membrane-associated domain 4 (M4) of the NR2A subunit in channel gating as well as alcohol sensitivity of the NMDA receptor. The role of sites in M4 of the NMDA receptor NR2A subunit adjacent to Met823 was investigated using tryptophan-scanning mutagenesis and electrophysiological recording. Receptors containing NR1 and NR2A(V820W) or NR2A(M817W) mutant subunits expressed in HEK 293 cells were not functional. The mutation Ala826Trp modified apparent desensitization, and the mutations Ala825Trp and Ala826Trp changed the mean open time of the channel as determined by fluctuation analysis. In addition, the mutations Tyr822Trp and Ala825Trp significantly altered the concentration–response curves for ethanol inhibition. The changes in mean open time did not appear to be able to account for the observed differences in ethanol sensitivity. These results indicate that this region in M4 of the NR2A subunit may be involved in the action of alcohol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.