Abstract

Density functional calculations yield energy barriers for H abstraction by oxygen radical sites in Li-doped MgO that are much smaller (12±6 kJ mol(-1)) than the barriers inferred from different experimental studies (80-160 kJ mol(-1)). This raises further doubts that the Li(+)O(˙-) site is the active site as postulated by Lunsford. From temperature-programmed oxidative coupling reactions of methane (OCM), we conclude that the same sites are responsible for the activation of CH4 on both Li-doped MgO and pure MgO catalysts. For a MgO catalyst prepared by sol-gel synthesis, the activity proved to be very different in the initial phase of the OCM reaction and in the steady state. This was accompanied by substantial morphological changes and restructuring of the terminations as transmission electron microscopy revealed. Further calculations on cluster models showed that CH4 binds heterolytically on Mg(2+)O(2-) sites at steps and corners, and that the homolytic release of methyl radicals into the gas phase will happen only in the presence of O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.