Abstract

We investigate magnetization in double perovskite multiferroic Bi2FeMnO6 (BFMO) thin film using density functional theory (DFT) simulations, and X-ray magnetic circular dichroism (XMCD) measurements. The exchange interaction between Fe and Mn sites gives rise to a ferrimagnetic ordering in BFMO. When grown without structural defects, distinct XMCD signal is expected from this system. The site resolved magnetization, thus, can be extracted using XMCD sum rules. Although our theoretical calculations are consistent with this expectation for the ideal BFMO system, experimental measurements find evidence of anomalous peak for the L2 and L3 edges of XMCD signals, and thus, the XMCD sum rules are no longer valid. We theoretically explain this phenomenon by considering both tetragonal (near interface), and monoclinic (bulk) phases of BFMO system, with Fe and Mn ions interchanged between their respective sites. Such site-mixing between magnetic cations are commonly found during the synthesis process. Our DFT calculations of XMCD for site interchanged Fe and Mn ions in the bulk phase (monoclinic) of BFMO are in good agreement with experimental XMCD signal and reproduce the anomalous peak features at L2/L3 edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.