Abstract

βlactam resistance in clinical isolates of Streptococcus pneumoniae arises by only one route, the reduction of the affinity of the penicillin-binding proteins (PBPs) for βlactams. The pneumococcus possesses five high molecular weight PBPs (PBP1A, 1B, 2A, 2B, and 2X) which are involved in the final crosslinking stages of peptidoglycan synthesis in the bacterial cell wall. βlactam antibiotics are structural analogs of the natural cell wall peptide substrates of the PBPs. The antibiotic binds to the active site within the transpeptidase domain of these PBPs, forming an acyl-enzyme complex which is far more stable than the transient enzyme-substrate complex that normally occurs. In this way, the βlactams block the crosslinking in what is essentially an irreversible manner. The result is a cessation in cell growth and, depending on the PBP inhibited, lysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.