Abstract

Serratia marcescens is a nosocomial bacterium with natural resistance to a broad spectrum of antibiotics, making treatment challenging. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, controlled in part by OmpF and OmpC porin proteins. To investigate the direct role of these porins in the diffusion of antibiotics across the outer membrane, we have created an ompF-ompC porin-deficient strain of S. marcescens. A considerable similarity between the S. marcescens porins and those from other members of Enterobacteriaceae was detected by sequence alignment, with the exception of a change in a conserved region of the third external loop (L3) of the S. marcescens OmpC protein. Serratia marcescens OmpC has aspartic acid instead of glycine in position 112, methionine instead of aspartic acid in position 114, and glutamine in position 124, while in S. marcescens OmpF this is a glycine at position 124. To investigate the role of amino acid positions 112, 114, and 124 and how the observed changes within OmpC porin may play a part in pore permeability, 2 OmpC sites were altered in the Enterobacteriaceae consensus (D112G and M114D) through site-directed mutagenesis. Also, Q124G in OmpC, G124Q in OmpF, and double mutants of these amino acid residues were constructed. Antibiotic accumulation assays and minimal inhibitory concentrations of the strains harboring the mutated porins were performed, while liposome swelling experiments were performed on purified porins. Our results demonstrate that the amino acid at position 114 is not responsible for either antibiotic size or ionic selection, the amino acid at position 112 is responsible for size selection only, and position 124 is involved in both size and ionic selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.