Abstract

Conformational differences between type I antiestrogen-liganded estrogen receptor and estradiol (E 2)-liganded estrogen receptor (ER) are thought to be responsible for differentiating agonist versus antagonist ER activity at individual genes. To examine the impact of ER ligand on estrogen-response element (ERE) binding kinetics and receptor conformation, we quantitated the effect of site-directed, ER-specific antibodies raised against synthetic peptides corresponding to the DNA-binding domain of human ER on ER-ERE binding in vitro. Although 4-hydroxytamoxifen-liganded-ER (4-OHT-ER) and E 2-ER bind a consensus ERE with equal high affinity, the stoichiometry of 4-OHT-ER-ERE binding at saturation is approximately 50% lower than that of E 2-ER binding to all ERE sequences tested. In contrast, the ERE binding stoichiometry of tamoxifen aziridine-liganded ER (TAz-ER) is identical to that of E 2-ER: one receptor dimer bound per ERE. The difference in binding stoichiometry is caused by dissociation of one molecule of 4-OHT from the ER as the dimeric receptor binds DNA. Addition of low concentrations of ER-specific polyclonal antibodies AT3A or AT3B prevented 4-OHT ligand dissociation, yielding an increase in specific 4-OHT-ER-ERE binding to a level equal to that of E 2-ER- or TAz-ER-ERE binding. However, higher amounts of AT3A or AT3B inhibited specific ERE binding of both 4-OHT- and E 2-ER. We conclude that differences in ER conformation when liganded with 4-OHT versus E 2 are revealed by these antibodies and that such differences in receptor conformation may influence subsequent interaction of the receptor with other proteins necessary for transactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.