Abstract
Recombinant tick anticoagulant peptide (rTAP) is a highly selective inhibitor of blood coagulation factor Xa. rTAP has been characterized kinetically as a slow, tight-binding, competitive inhibitor of the enzyme. We used an approach consisting of both recombinant, site-directed mutagenesis and solid-phase chemical synthesis to generate 31 independent mutations in rTAP to identify those regions of the molecule which contribute to the specific, high-affinity binding interaction with factor Xa. Our results demonstrate that the four amino-terminal residues of rTAP constitute the primary recognition determinant necessary for the formation of the high-affinity enzyme-inhibitor complex. The Arg residue in position three is probably not interacting with the S1-specificity pocket of factor Xa in a substrate-like manner since substitution at this position with a D-Arg amino acid produced only a modest decrease in affinity (5-fold). An additional domain in the rTAP molecule located between residues 40 and 54 was identified as a probable secondary binding determinant. Interestingly, this region in rTAP shares significant amino acid sequence homology with a sequence in prothrombin immediately amino-terminal to the factor Xa cleavage site that generates meizothrombin. These observations indicate that specific segments within two different regions of the rTAP molecule contribute to the potent binding interaction between rTAP and factor Xa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.