Abstract

The aim of this study was to investigate the site-dependent changes in the structure and function of articular cartilage in the lapine knee joint at a very early stage of osteoarthritis (OA), created experimentally by anterior cruciate ligament transection (ACLT). Unilateral ACLT was performed in eight mature New Zealand white rabbits. ACL transected and contralateral (C-L) joints were prepared for analysis at 4 weeks after ACLT. Three rabbits with intact joints were used as a control group (CNTRL). Femoral groove, medial and lateral femoral condyles, and tibial plateaus were harvested and used in the analysis. Biomechanical tests, microscopy and spectroscopy were used to determine the biomechanical properties, composition and structure of the samples. A linear mixed model was chosen for statistical comparisons between the groups. As a result of ACLT, the equilibrium and dynamic moduli were decreased primarily in the femoral condyle cartilage. Up to three times lower moduli (P<0.05) were observed in the ACLT group compared to the control group. Significant (P<0.05) proteoglycan (PG) loss in the ACLT joint cartilage was observed up to a depth of 20-30% from the cartilage surface in femoral condyles, while significant PG loss was confined to more superficial regions in tibial plateaus and femoral groove. The collagen orientation angle was increased (P<0.05) up to a cartilage depth of 60% by ACLT in the lateral femoral condyle, while smaller effects, but still significant, were observed at other locations. The collagen content was increased (P<0.05) in the middle and deep zones of the ACLT group compared to the control group samples, especially in the lateral femoral condyle. Femoral condyle cartilage experienced the greatest structural and mechanical alterations in very early OA, as produced by ACLT. Degenerative alterations were observed especially in the superficial collagen fiber organization and PG content, while the collagen content was increased in the deep tissue of femoral condyle cartilage. The current findings provide novel information of the early stages of OA in different locations of the knee joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.