Abstract

Semiconductor quantum-dot (QD) systems offering perfect site control and tunable emission energy are essential for numerous nanophotonic device applications involving spatial and spectral matching of dots with optical cavities. Herein, the properties of ordered InGaAs/GaAs QDs grown by organometallic chemical vapor deposition on substrates patterned with pyramidal recesses are reported. The seeded growth of a single QD inside each pyramid results in near-perfect (<10 nm) control of the QD position. Moreover, efficient and uniform photoluminescence (inhomogeneous broadening <10 meV) is observed from ordered arrays of such dots. The QD emission energy can be finely tuned by varying 1) the pyramid size and 2) its position within specific patterns. This tunability is brought about by the patterning of both the chemical properties and the surface curvature features of the substrate, which allows local control of the adatom fluxes that determine the QD thickness and composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.