Abstract

Psoriasis and diabetes are both common comorbidities for each other, where inflammation and insulin resistance act in a vicious cycle, driving the progression of disease through the activation of the NF-κB signaling pathway. Therefore, disrupting the linkage between inflammation and insulin resistance by inhibiting the NF-κB pathway presents a promising therapeutic strategy for addressing psoriasis-diabetic comorbidity. Herein, an open-loop therapy was developed by integrating microneedle-mediated short- and long-range missiles to target psoriasis and diabetes, respectively. The short-range missile (curcumin nanoparticle) could be stationed in the psoriatic skin for topical and prolonged antipsoriasis therapy, while the long-range missile (metformin) is capable of penetrating transdermal barriers to induce a systemic hypoglycemic effect. More attractively, the short- and long-range missiles could join hands to inhibit the NF-κB signaling pathway and diminish inflammation, effectively disrupting the crosstalk between inflammation and insulin resistance. Pharmacodynamic studies showed that this microneedle-mediated combination, possessing dual anti-inflammatory and antihyperglycemic properties, proves to be highly efficacious in alleviating typical symptoms and inflammatory response in both nondiabetic and diabetic mice with imiquimod (IMQ)-induced psoriasis models. Hence, the microneedle-mediated open-loop therapy shows great potential in the management of psoriasis-diabetes comorbidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call