Abstract

Many DNA binding ligands (e.g., nogalamycin, actinomycin D, terbenzimidazoles, indolocarbazoles, nitidine, and coralyne) and various types of DNA lesions (e.g., UV dimers, DNA mismatches, and abasic sites) are known to stimulate topoisomerase I-mediated DNA cleavage. However, the mechanism(s) by which these covalent and noncovalent DNA interactions stimulate topoisomerase I-mediated DNA cleavage remains unclear. Using nogalamycin as a model, we have studied the mechanism of ligand-induced topoisomerase I-mediated DNA cleavage. We show by both mutational and DNA footprinting analyses that the binding of nogalamycin to an upstream site (from position -6 to -3) can induce highly specific topoisomerase I-mediated DNA cleavage. Substitution of this nogalamycin binding site with a DNA bending sequence (A(5)) stimulated topoisomerase I-mediated DNA at the same site in the absence of nogalamycin. Replacement of the A(5) sequence with a disrupted DNA bending sequence (A(2)TA(2)) significantly reduced the level of topoisomerase I-mediated DNA cleavage. These results, together with the known DNA bending property of nogalamycin, suggest that the nogalamycin-DNA complex may provide a DNA structural bend to stimulate topoisomerase I-mediated DNA cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.