Abstract
Dynamic photoswitches in proteins that impart spatial and temporal control are important to manipulate and study biotic and abiotic processes. Nonetheless, approaches to install these switches into proteins site-specifically are limited. Herein we describe a novel site-specific method to generate photoremovable protein conjugates. Amine-containing chromophores (e.g., venerable o-nitrobenzyl and less-explored o-nitrophenylethyl groups) were incorporated via transamidation into a glutamine side chain of α-gliadin, LCMV, and TAT peptides, as well as β-casein and UmuD proteins by transglutaminase (TGase, EC 2.3.2.13). Subsequently, photolysis regenerated the native peptides and proteins. When this modification leads to the reduction or abolishment of certain activities, the process is referred to as caging, as in the case for E. coli polymerase manager protein UmuD. Importantly, this method is simple, robust, and easily adaptable, e.g., all components are commercially available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.