Abstract

Predicting the structural effects of insertions in proteins by homology modeling remains a challenge. To investigate the molecular basis for conformational adaptations to insertions, ten mutants of ubiquitin were generated by introducing five different inserts, varying from five to 11 residues in size, at two different sites. Most insertion sequences were derived from homologous positions in structurally homologous ubiquitin-like proteins; to test sequence specificity, insertions were made into both homologous and non-homologous sites in ubiquitin. Structural inferences from NMR data suggest that each insertion site shows a reflex response to insertions: the sequence of the insertion has much less impact on structural adaptations than does the site of the insertion. Further, each site responds to insertions in a unique but consistent manner. For a given insertion site, different inserted sequences give rise to different stabilities, but the relationship between stability and sequence is not yet clear. However, the change in stability is similar for all insertions in a given site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.