Abstract
Hyperphosphorylation of tau is of fundamental importance for neurofibrillary lesion development in Alzheimer’s disease, but the mechanisms through which it acts are not clear. Experiments with pseudophosphorylation mutants of full-length tau protein indicate that incorporation of negative charge into specific sites can modulate the aggregation reaction, and that this occurs by altering the critical concentration of assembly. Here, the kinetic origin of this effect was determined using quantitative electron microscopy methods and pseudophosphorylation mutant T212E in a full-length four-repeat tau background. On the basis of disaggregation rates, decreases in critical concentration resulted primarily from decreases in the dissociation rate constant. The results suggest a mechanism through which site-specific posttranslational modifications can modulate filament accumulation at low free intracellular tau concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.