Abstract

Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes 1H, 13C and 15N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium's large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional 2H-13C-1H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl 2H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint 1H-15N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.