Abstract
We have developed a highly specific and robust new method for labeling adeno-associated virus (AAV) vector particles with either biophysical probes or targeting ligands. Our approach uses the Escherichia coli enzyme biotin ligase (BirA), which ligates biotin to a 15-amino-acid biotin acceptor peptide (BAP) in a sequence-specific manner. In this study we demonstrate that by using a ketone isotere of biotin as a cofactor we can ligate this probe to BAP-modified AAV capsids. Because ketones are absent from AAV, BAP-modified AAV particles can be tagged with the ketone probe and then specifically conjugated to hydrazide- or hydroxylamine-functionalized molecules. We demonstrate this two-stage modification methodology in the context of a mammalian cell lysate for the labeling of AAV vector particles with various fluorophores, and for the attachment of a synthetic cyclic arginine-glycine-aspartate (RGD) peptide (c(RGDfC)) to target integrin receptors that are present on neovasculature. Fluorophore labeling allowed the straightforward determination of intracellular particle distribution. Ligand conjugation mediated a significant increase in the transduction of endothelial cells in vitro, and permitted the intravascular targeting of AAV vectors to tumor-associated vasculature in vivo. These results suggest that this approach holds significant promise for future studies aimed at understanding and modifying AAV vector-cellular interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.