Abstract

Statistical modeling is commonly used to relate the performance of potato (Solanum tuberosum L.) to fertilizer requirements. Prescribing optimal nutrient doses is challenging because of the involvement of many variables including weather, soils, land management, genotypes, and severity of pests and diseases. Where sufficient data are available, machine learning algorithms can be used to predict crop performance. The objective of this study was to determine an optimal model predicting nitrogen, phosphorus and potassium requirements for high tuber yield and quality (size and specific gravity) as impacted by weather, soils and land management variables. We exploited a data set of 273 field experiments conducted from 1979 to 2017 in Quebec (Canada). We developed, evaluated and compared predictions from a hierarchical Mitscherlich model, k-nearest neighbors, random forest, neural networks and Gaussian processes. Machine learning models returned R2 values of 0.49-0.59 for tuber marketable yield prediction, which were higher than the Mitscherlich model R2 (0.37). The models were more likely to predict medium-size tubers (R2 = 0.60-0.69) and tuber specific gravity (R2 = 0.58-0.67) than large-size tubers (R2 = 0.55-0.64) and marketable yield. Response surfaces from the Mitscherlich model, neural networks and Gaussian processes returned smooth responses that agreed more with actual evidence than discontinuous curves derived from k-nearest neighbors and random forest models. When conditioned to obtain optimal dosages from dose-response surfaces given constant weather, soil and land management conditions, some disagreements occurred between models. Due to their built-in ability to develop recommendations within a probabilistic risk-assessment framework, Gaussian processes stood out as the most promising algorithm to support decisions that minimize economic or agronomic risks.

Highlights

  • Modeling provides a quantitative understanding of how crop systems operate [1]

  • This study assessed machine learning techniques as an alternative for potato fertilizer recommendations at local scale usually handled by statistical models or meta-analysis at regional scale

  • Mitscherlich, k-nearest neighbors (KNN), random forest (RF), neural networks (NN) and Gaussian processes (GP), were evaluated against optimal economic N, P and K doses derived from yield, or against optimal agronomic N, P and K doses derived from tuber size and Specific gravity (SG)

Read more

Summary

Objectives

The objective of this study was to determine an optimal model predicting nitrogen, phosphorus and potassium requirements for high tuber yield and quality as impacted by weather, soils and land management variables. The objective of this study was to develop, evaluate and compare the performance of machine learning models in predicting N, P and K requirements for potato

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.