Abstract

Site-specific labeling of enzymatically synthesized DNA or RNA has many potential uses in basic and applied research, ranging from facilitating biophysical studies to the in vitro evolution of functional nucleic acids and the construction of various nanomaterials and biosensors. As part of our efforts to expand the genetic alphabet, we have developed a class of unnatural base pairs, exemplified by d5SICS-dMMO2 and d5SICS-dNaM, which are efficiently replicated and transcribed, and which may be ideal for the site-specific labeling of DNA and RNA. Here, we report the synthesis and analysis of the ribo- and deoxyribo-variants, (d)5SICS and (d)MMO2, modified with free or protected propargylamine linkers that allow for the site-specific modification of DNA or RNA during or after enzymatic synthesis. We also synthesized and evaluated the α-phosphorothioate variant of d5SICSTP, which provides a route to backbone thiolation and an additional strategy for the postamplification site-specific labeling of DNA. The deoxynucleotides were characterized via steady-state kinetics and PCR, while the ribonucleosides were characterized by the transcription of both a short, model RNA as well as full length tRNA. The data reveal that while there are interesting nucleotide and polymerase-specific sensitivities to linker attachment, both (d)MMO2 and (d)5SICS may be used to produce DNA or RNA site-specifically modified with multiple, different functional groups with sufficient efficiency and fidelity for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.