Abstract

Light-chain amyloidosis (AL) is one of the most common systemic amyloidoses, and it is characterized by the deposition of immunoglobulin light chain (LC) variable domains as insoluble amyloid fibers in vital organs and tissues. The recombinant protein 6aJL2-R24G contains λ6a and JL2 germline genes and also contains the Arg24 by Gly substitution. This mutation is present in 25% of all amyloid-associated λ6 LC cases, reduces protein stability, and increases the propensity to form amyloid fibers. In this study, it was found that the interaction of 6aJL2-R24G with Cu(II) decreases the thermal stability of the protein and accelerates the amyloid fibril formation, as observed by fluorescence spectroscopy. Isothermal calorimetry titration showed that Cu(II) binds to the protein with micromolar affinity. His99 may be one of the main Cu(II) interaction sites, as observed by nuclear magnetic resonance spectroscopy. The binding of Cu(II) to His99 induces larger fluctuations of the CDR1 and loop C″, as shown by molecular dynamics simulations. Thus, Cu(II) binding may be inducing the loss of interactions between CDR3 and CDR1, making the protein less stable and more prone to form amyloid fibers. This study provides insights into the mechanism of metal-induced aggregation of the 6aJL2-R24G protein and sheds light on the bio-inorganic understanding of AL disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.