Abstract

Small ubiquitin-like modifier (SUMO) modification regulates various eukaryotic cellular processes and plays a pivotal role in interferon (IFN)-mediated antiviral defense. While immunoprecipitation enrichment method is widely used for proteome-wide analysis of endogenous SUMOylation, the inability to target all SUMO forms and high cost of antibodies limited its further application. Herein, we proposed an antibody-free enrichment method based on SUMO-specific protease and strong anion exchange chromatography (SPAX) to globally profile the endogenous SUMOylation. The SUMO1/2/3-modified peptides could be simultaneously enriched by SAX chromatography by utilizing its electrostatic interaction with SUMO1/2/3 remnants, which contained multiple aspartic acids (D) and glutamic acids (E). To remove the co-enriched D/E-containing peptides which might interfere with the detection of low-abundance SUMOylated peptides, SUMO-specific protease was used to cleave the SUMO1/2/3 remnants from enriched SUMOylated peptides. As the deSUMOylated peptides lost SUMO remnants, their interaction with SAX materials became weaker, and the D/E-containing peptides could thus be depleted through the second SAX separation. The SPAX method identified over twice the SUMOylated sites than using SAX method only, greatly improving the identification coverage of endogenous SUMOylated sites. Our strategy was then applied to the site-specific identification and quantification of endogenous SUMOylation in A549 cells stimulated by IFN-γ for the first time. A total of 226 SUMOylated sites on 146 proteins were confidently identified, among which multiple up-regulated sites were involved in IFN-mediated antiviral defense, demonstrating the great promise of SPAX to globally profile and discover endogenous SUMOylation with significant biological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.