Abstract

Colloids specifically developed for self-assembly (SA) into advanced functional materials have rapidly become more complex, as this complexity allows for more ways to optimize both the SA process and the properties of the resulting materials. For instance, by creating 'patchy' particles more open structures can be achieved through directional interactions. However, the number of ways in which site-specific chemistry can be achieved on particle surfaces is still limited. Here, we show how polymer patches can be specifically grown onto only the flat end of bullet-shaped silica rods by utilizing a subtle anisotropy in surface tension and shape caused by the growth mechanism of the rods. Conversely, if the bullet-shaped silica rods are used as 'Pickering-emulsion' stabilizers the same surface tension effects exclusively direct the orientation of the rods into a 'hedgehog-morphology'. Finally, we demonstrate how an external electric field can direct the particles in a 'vectorial' way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.