Abstract

The aim of this study was to design food grade matrices to deliver microencapsulated fish oil to the large bowel of the rat where the potential exists to retard inflammation and cancer development. Digestion in simulated gastric fluid and intestinal fluid demonstrated that only 4-6% of oil was released from the following dried emulsion formulations: 50% fish oil encapsulated in heated casein-glucose-dried glucose syrup (1:1:1) (Cas-Glu-DGS-50); 25% fish oil in casein-modified resistant starch (Hylon VII) (1:1) (Cas-Hylon-25); or 25% fish oil in Cas-Glu-Hylon (1:1:1) (Cas-Glu-Hylon-25). A short-term gavage study (0-12 h) with fish oil and Cas-Glu-DGS-50 demonstrated the appearance of fish oil long chain (LC) n-3 polyunsaturated fatty acids (PUFA) into the plasma indicating specific small intestinal absorption with little LC n-3 PUFA reaching the large bowel. In a 2-week-long term, daily gavage study, the bioavailability of fish oil and fish oil in Cas-Glu-DGS-50 or Cas-Hylon-25 demonstrated that fish oil and Cas-Glu-DGS-50 LC n-3 PUFA were incorporated into the tissue of the small intestine and colon, whereas Cas-Hylon-25 was resistant to degradation in the small intestine. The use of modified Hylon VII for targeted colonic delivery was confirmed in the final short-term gavage study (0-14 h) using Cas-Glu-Hylon-25 with [(14)C]-trilinolenin as a marker incorporated into the microcapsules, where up to 60% of the labeled oil reached the large bowel. Depending on the microencapsulating matrix employed, fish oil can be delivered selectively to the small intestine or to a high degree to the large bowel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call