Abstract

We demonstrate the site-specific incorporation of nucleobase derivatives bearing fluorophores or affinity labels into a short RNA stem loop recognition motif by exchange of a guanine residue. The RNA-TAG (transglycosylation at guanosine) is carried out by a bacterial (E. coli) tRNA guanine transglycosylase (TGT), whose natural substrate is the nitrogenous base PreQ1. Remarkably, we have successfully incorporated large functional groups including biotin, BODIPY, thiazole orange, and Cy7 through a polyethylene glycol linker attached to the exocyclic amine of PreQ1. Larger RNAs, such as mRNA transcripts, can be site-specifically labeled if they possess the 17-nucleotide hairpin recognition motif. The RNA-TAG methodology could facilitate the detection and manipulation of RNA molecules by enabling the direct incorporation of functional artificial nucleobases using a simple hairpin recognition element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.