Abstract

Immobilization of enzymes enhances their properties for application in industrial processes as reusable and robust biocatalysts. Here, we developed a new immobilization method by mimicking the natural cellulosome system. A group of cohesin and carbohydrate-binding module (CBM)-containing scaffoldins were genetically engineered, and their length was controlled by cohesin number. To use green fluorescent protein (GFP) as an immobilization model, its C-terminus was fused with a dockerin domain. GFP was able to specifically bind to scaffoldin via cohesin-dockerin interaction, while the scaffoldin could attach to cellulose by CBM-cellulose interaction. Our results showed that this mild and convenient approach was able to achieve site-specific immobilization, and the maximum GFP loading capacity reached ∼0.508 μmol/g cellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call