Abstract
Intermetallic compounds are emerging as promising oxygen reduction reaction (ORR) catalysts for fuel cells due to their typically higher activity and durability compared to disordered alloys. However, the preparation of intermetallic catalysts often requires high-temperature annealing, which unfortunately leads to adverse sintering of the metal nanoparticles. Herein, we develop a scalable site-selective sulfur anchoring strategy that effectively suppresses alloy sintering, ensuring the formation of efficient intermetallic electrocatalysts with small sizes and high ordering degrees. The alloy-support interactions are precisely modulated by selectively modifying the alloy-support interfaces with oxidized sulfur species, thus simultaneously blocking both the nanoparticle migration and Oswald ripening pathways for sintering. Using this strategy, sub-5 nm PtCo intermetallic electrocatalysts enclosed by two atomic layers of Pt shells have been successfully prepared even at a metal loading higher than 30 wt%. The intermetallic catalysts exhibit excellent ORR performances in both rotating disk electrode and membrane electrode assembly conditions with a mass activity of 1.28 A mgPt−1 at 0.9 V (vs. RHE) and a power density of 1.0 W cm−2 at a current density of 1.5 A cm−2. The improved performances result from the enhanced Pt-Co electronic interactions and compressive surface strain generated by the highly ordering structure, while the atomic Pt shells prevent the dissolution of Co under highly acidic conditions. This work provides new insights to inhibit the sintering of nanoalloys and would promote the scalable synthesis and applications of platinum-based intermetallic catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.