Abstract

AbstractFlavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine‐tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post‐functionalization. We show that the introduction of a remote metal‐binding redox site on alloxazine and flavin activates their aromatic ring towards direct C−H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground‐state single electron transfer (SET) with an electrophilic source followed by radical‐radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post‐functionalization and the utility of the method is demonstrated with the site‐selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call