Abstract

AbstractThe selective functionalization of one C−H bond over others in nearly identical steric and electronic environments can facilitate the construction of complex molecules. We report site‐selective functionalizations of C−H bonds, differentiated solely by remote substituents, catalyzed by artificial metalloenzymes (ArMs) that are generated from the combination of an evolvable P450 scaffold and an iridium‐porphyrin cofactor. The generated systems catalyze the insertion of carbenes into the C−H bonds of a range of phthalan derivatives containing substituents that render the two methylene positions in each phthalan inequivalent. These reactions occur with site‐selectivity ratios of up to 17.8:1 and, in most cases, with pairs of enzyme mutants that preferentially form each of the two constitutional isomers. This study demonstrates the potential of abiotic reactions catalyzed by metalloenzymes to functionalize C−H bonds with site selectivity that is difficult to achieve with small‐molecule catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.