Abstract
Distinction of chemical functionality by their local chemical environment is a skill mastered by enzymes, evident from the selective synthesis, cleavage, and transformation of peptides, nucleic acids, and polysaccharides that abound with the same type of functional groups. In contrast, synthetic catalysts are generally better at differentiating functional groups based on their electronic and steric properties. Here we report artificial epoxidases prepared through molecular imprinting of surface-core doubly cross-linked micelles, followed by efficient functionalization of the imprinted site in the micellar core via photoaffinity labeling. The size and shape of the active sites are tuned by the modularly synthesized templates, with the oxygen-delivering peroxy acid group positioned accurately. These catalysts are used in epoxidation of alkene in water with hydrogen peroxide under mild conditions, without any additional additives. Most importantly, atomic precision is achieved in the catalysis and enables alkenes to be distinguished that differ in the position of the carbon-carbon double bond by a single carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.