Abstract
Catalytic systems for direct C-H activation of arenes commonly show preference for electronically activated and sterically exposed C-H sites. Here we show that a range of functionally rich and pharmaceutically relevant arene classes can undergo site-selective C-H arylation ortho to small alkyl substituents, preferably endocyclic methylene groups. The C-H activation is experimentally supported as being the selectivity-determining step, while computational studies of the transition state models indicate the relevance of non-covalent interactions between the catalyst and the methylene group of the substrate. Our results suggest that preference for C(sp2 )-H activation next to alkyl groups could be a general selectivity mode, distinct from common steric and electronic factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.