Abstract
By combining Ce(IV)/EDTA with two pseudo-complementary peptide nucleic acids (pcPNAs), both strands in double-stranded DNA were site-selectively hydrolyzed at the target site. Either plasmid DNA (4361 bp) or its linearized form was used as the substrate. When two pcPNAs invaded into the double-stranded DNA, only the designated portion in each of the two strands was free from Watson-Crick base pairing with the counterpart DNA or the pcPNA. Upon the treatment of this invasion complex with Ce(IV)/EDTA at 37 degrees C and pH 7.0, both of these single-stranded portions were selectively hydrolyzed at the designated site, resulting in the site-selective two-strand scission of the double-stranded DNA. Furthermore, the hydrolytic scission products were successfully connected with foreign double-stranded DNA by using ligase. The potential of these artificial systems for manipulation of huge DNA has been indicated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.