Abstract

Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two R-sites (Wyckoff 4f and 4g, with four-fold multiplicity) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1−xCex) 2Fe14B [R = La,Nd] using density functional theory (DFT) methods—including a DFT + U scheme to treat localized 4f-electrons. Fe moments compare well with neutron data—almost unaffected by Hubbard U, and weakly affected by spin-orbit coupling. In La2Fe14B, Ce alloys for 0≤x≤1 and prefers smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas, in Nd2Fe14B, Ce is predicted to have limited alloying (x≤0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. The Curie temperatures versus x for (Nd,Ce) were predicted for a typical sample processing and verified experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.