Abstract
Abstract The electronic structure and magnetism of Mn2RhZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) Heusler alloys have been studied by using first-principles calculations. Three half-metallic ferromagnets, namely, Mn2RhAl, Mn2RhGe and Mn2RhSb have been considered. The calculated equilibrium lattice constant increases with increasing atomic number of Z atoms lying in same column of periodic table. The calculated total magnetic moments Mtot are 2 µB/f.u. for Mn2RhAl and Mn2RhGa, 3 µB/f.u. for Mn2RhSi, Mn2RhGe and Mn2RhSn, and 4 µB/f.u. for Mn2RhSb, which agrees with the Slater-Pauling curve quite well. In all these compounds, except for Mn2RhSb, the moments of Mn (A) and Mn (B) are antiparallel to each other. The total magnetic moments of the three considered half-metals assume integral values in a wide range of equilibrium lattice parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.