Abstract

First-principles supercell calculations based on density functional theory were performed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. It is found that Ti occupies the Y sublattice, while V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag site. All alloying elements can decrease the lattice parameters of Y8Ag8, among which Y7Ag8Ti shows the largest change. Furthermore, the calculated elastic constants show that Cr, Fe, Co and Cu can improve the ductility of YAg alloy, and Y8Ag7Fe presents the most ductility among these alloy, while Ti and Ni alloying elements reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni can increase the hardness of YAg alloy, and Y8Ag7V is harder than Y8Ag7Ni.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call