Abstract

Interspecific interactions can mediate site occupancy of sympatric species and can be a key factor in habitat use patterns. American martens (Martes americana) and Fishers (Pekania pennanti) are two sympatric mesocarnivores in eastern North American forests. Due to their larger size, fishers have a competitive advantage over martens. We investigated site occupancy of martens and fishers in temperate deciduous forests of Québec, an environment modified by forest management and climate change. We formulated hypotheses on the spatial distribution of the studied species based on the knowledge of local trappers and on the scientific literature regarding forest cover composition, habitat fragmentation, and competitive relationships. We used a network of 49 camera traps monitored over two fall seasons to document site occupancy by both species. We used two-species site occupancy models to assess habitat use and the influence of fishers on martens at spatial grains of different sizes. None of the habitat variables that we considered explained site occupancy by fishers. Availability of dense old coniferous stands explained the spatial distribution of martens both at the home range grain size and at the landscape grain size. We identified the characteristics of habitat hotspots based on the knowledge of trappers, which highlighted the importance of stand composition, height, age, and canopy closure. The characteristics of habitat hotspots for martens in temperate deciduous forests refine the habitat suitability model for American martens that was originally developed for boreal forests of Québec.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call