Abstract

Understanding the degree of demographic connectivity among population segments is increasingly recognized as central to the fields of population ecology and conservation biology. However, delineating discrete population units has proven challenging, particularly for migratory birds as they move through their annual cycle. In this study, radio telemetry was used to assess movement rates among habitats by harlequin ducksHistrionicus histrionicusduring the non‐breeding season in Prince William Sound, Alaska. A total of 434 females were outfitted with radio transmitters over six years of data collection, and their signals tracked by aircraft. Using a spatially nested design, it was determined that 75% of radioed females remained in the bay or coastline area where they were originally trapped, 94% remained on the same island or mainland region of Prince William Sound where they began the winter period, and 98% remained within the 4500 km2study area as a whole. Home range analyses corroborated these findings, indicating that the scale of individual movements was small, with 95% kernel home range estimates averaging only 11.5±2.2 km2. A simple demographic model, which incorporated estimates for population size, survival, and movement rates, was used to infer the degree of independence among population segments. Immigrant females were found to contribute little to population numbers in most areas, accounting for only 4% of the adult female population at a scale of approximately 100 km2. These results have important implications for the scale of conservation action for the species and demonstrate that winter movements can have a strong influence local population dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.