Abstract

We show that the transition in AMnO3 from the orthorhombic perovskite phase to the hexagonal phase is promoted by inducing site disorder on the A-site. The gap between the orthorhombic and the hexagonal phase is widened for site disordered, mixed yttrium−gadolinium manganite samples. At the cost of the orthorhombic phase, a two phase region emerges. The phase separation exhibits very unusual thermodynamical behavior. We also show that high-pressure synthesis favors the orthorhombic phase. YMnO3 is formed in the orthorhombic phase at 15 kbar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.