Abstract

The 3-D structure of the maltooligosaccharide-specific LamB channel of Escherichia coli (also called maltoporin) is known from x-ray crystallography. The central constriction of the channel formed by the external loop 3 is controlled by tyrosine 118. Y118 was replaced by site-directed mutagenesis by 10 other amino acids (alanine (A), isoleucine (I), asparagine (N), serine (S), cysteine (C), aspartic acid (D), arginine (R), histidine (H), phenylalanine (F), and tryptophan (W)) including neutral ones, negatively and positively charged amino acids to study the effect of their size, their hydrophobicity index, and their charge on maltose and maltooligosaccharide binding to LamB. The mutants were reconstituted into lipid bilayer membranes and the stability constants for binding of maltose, maltotriose, maltopentaose, and maltoheptaose to the channel were measured using titration experiments. The mutation of Y118 to any other non-aromatic amino acid led to a substantial decrease of the stability constant of binding by factors between about two and six. The highest effect was observed for the mutant Y118A. Replacement of Y118 by the two other aromatic amino acids, phenylalanine (F) and tryptophan (W), resulted in a substantial increase of the stability constant maximally by a factor of almost 400 for the Y118W mutant. The carbohydrate-induced block of the channel function was used for the study of current noise through the different mutant LamB channels. The analysis of the power density spectra allowed the evaluation of the on- and off-rate constants (k1 and k−1) of sugar binding. The results suggest that both rate constants were affected by the mutations. For most mutants, with the exception of Y118F and Y118W, k1 decreased and k−1 increased, whereas the opposite was found for the aromatic amino acid mutants. The results suggest that tyrosine 118 has a crucial effect on carbohydrate transport through LamB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.