Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are pivotal enzymes in the degradation and remodeling of glycoproteins, which catalyze the cleavage or formation of β-1,4-glycosidic bond between two N-acetylglucosamine (GlcNAc) residues in N-linked glycan chains. It was investigated that targeted mutations of amino acids in ENGases active site may modulate their hydrolytic and transglycosylation activities. Endo-Tb, the ENGase derived from Trypanosoma brucei, belongs to the glycoside hydrolase family 85 (GH85). Our group previously demonstrated that Endo-Tb exhibits hydrolytic activity toward high-mannose and complex type N-glycans and preliminarily confirmed its transglycosylation potential. In this study, we further optimized the transglycosylation activity of recombinant Endo-Tb by focusing on the N536A, E538A and Y576F mutants. A comparative analysis of their transglycosylation activity with that of the wild-type enzyme revealed that all mutants exhibited enhanced transglycosylation capacity. The N536A mutant exhibited the most pronounced improvement in transglycosylation activity with a significant reduction in hydrolytic activity. It is suggested that Endo-Tb N536A possesses the potential as a tool for synthesizing a wide array of glycoconjugates bearing high-mannose and complex type N-glycans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.