Abstract

We study the physical consequences of site dilution in Kitaev's honeycomb model, in both its gapped and gapless phases. We show that a vacancy binds a flux of the emergent $Z_2$ gauge field and induces a local moment. In the gapped phase this moment is free while in the gapless phase the susceptibility has the dependence $\chi(h)\sim\ln(1/h)$ on field strength $h$. Vacancy moments have interactions that depend on their separation, their relative sublattice, and the phase of the model. Strikingly, in the gapless phase, two nearby vacancies on the same sublattice have a parametrically larger $\chi(h)\sim(h[\ln(1/h)]^{3/2})^{-1}$. In the gapped phase, even a finite density of randomly distributed vacancies remains tractable, via a mapping to a bipartite random hopping problem. This leads to a strong disorder form of the low-energy thermodynamics, with a Dyson-type singularity in the density of states for excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.