Abstract

Nitrile oxide 1,3-dipolar cycloaddition to arylsulfonyl- and dialkylaminoallenes have been investigated within the framework of the Kohn-Sham density functional theory (DFT) at the B3LYP/6-31G(d,p) level. The hitherto-unexplained experimental behavior of sulfonylallenes was rationalized by transition-state calculations which enabled a semiquantitative treatment of the cycloaddition site- and regioselectivity. The reliability of DFT computations was further established by predicting the complete selectivity of the nitrile oxide cycloaddition to dialkylaminoallenes according to previous experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.