Abstract

Satellite-derived solar irradiance is advantageous in solar resource assessment due to its high spatiotemporal availability, but its discrepancies to ground-observed values remain an issue for reliability. Site adaptation can be employed to correct these errors by using short-term high-quality ground-observed values. Recent studies have highlighted the benefits of the sequential procedure of a regressive and a distribution-mapping technique in comparison to their individual counterparts. In this paper, we attempted to improve the sequential procedure by using various distribution mapping techniques in addition to the previously proposed quantile mapping. We applied these site-adaptation techniques on the global horizontal irradiance (GHI) and direct normal irradiance (DNI) obtained from the UASIBS-KIER model in Daejeon, South Korea. The best technique, determined by a ranking methodology, can reduce the mean bias from −5.04% and 13.51% to −0.45% and −2.02% for GHI and DNI, respectively, and improve distribution similarity by 2.5 times and 4 times for GHI and DNI, respectively. Partial regression and residual plot analysis were attempted to examine our finding that the sequential procedure is better than individual techniques for GHI, whereas the opposite is true for DNI. This is an initial study to achieve generalized site-adaptation techniques for the UASIBS-KIER model output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call