Abstract

BackgroundFalls are one of the main concerns in people with Parkinson's disease, leading to poor quality of life and increased mortality. The sit-to-walk movement is the most frequent postural transition task during daily life and is highly demanding in terms of balance maintenance and muscular strength. MethodsWith the aim of identifying biomechanical variables of high risk of falling, we investigated the sit-to-walk task performed by 9 Parkinson's disease patients with at least one fall episode in the six months preceding this study, 15 Parkinson's disease patients without previous falls, and 20 healthy controls. Motor performance was evaluated with an optoelectronic system and two dynamometric force plates after overnight suspension of all dopaminergic drugs and one hour after consumption of a standard dose of levodopa/benserazide. FindingsPoor trunk movements critically influenced the execution of the sit-to-walk movement in patients with a history of falling. The peak velocity of the trunk in the anterior-posterior direction discriminated faller from non-faller patients, with high specificity and sensitivity in both the medication-off and -on state. InterpretationOur results confirm the difficulties in merging consecutive motor tasks in patients with Parkinson's disease. Trunk movements during the sit-to-walk can provide valuable measurements to monitor and possibly predict the risk of falling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.