Abstract

We consider the problem of joint three-dimensional localization and synchronization for a single-input single-output (SISO) multi-carrier system in the presence of a reconfigurable intelligent surface (RIS), equipped with a uniform planar array. First, we derive the Cramér-Rao bounds (CRBs) on the estimation error of the channel parameters, namely, the angle-of-departure (AOD), composed of azimuth and elevation, from RIS to the user equipment (UE) and times-of-arrival (TOAs) for the path from the base station (BS) to UE and BS-RISUE reflection. In order to avoid high-dimensional search over the parameter space, we devise a low-complexity estimation algorithm that performs two 1D searches over the TOAs and one 2D search over the AODs. Simulation results demonstrate that the considered RIS-aided wireless system can provide submeter-level positioning and synchronization accuracy, materializing the positioning capability of Beyond 5G networks even with single-antenna BS and UE. Furthermore, the proposed estimator is shown to attain the CRB at a wide interval of distances between UE and RIS. Finally, we also investigate the scaling of the position error bound with the number of RIS elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call