Abstract
We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose basic reproduction number [Formula: see text] is computed as a function of a patch residence-time matrix [Formula: see text]. Our analysis implies that the resulting n-patch SIS model has robust dynamics when patches are strongly connected: There is a unique globally stable endemic equilibrium when [Formula: see text], while the disease-free equilibrium is globally stable when [Formula: see text]. Our further analysis indicates that the dispersal behavior described by the residence-time matrix [Formula: see text] has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence-time matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single-outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease-prevalence-driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state-dependent [Formula: see text] on disease dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.