Abstract

Sirtuins are highly conserved NAD+-dependent enzymes that are capable of removing a wide range of lipid lysine acyl-groups from protein substrates in a NAD+-dependent manner. These NAD+-dependent activities enable sirtuins to monitor cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals. Consequently, sirtuins are important for cell survival, stress resistance, proliferation, and differentiation. In recent years, sirtuins are increasingly recognized as crucial regulators of stem cell biology in addition to their well-known roles in metabolism and aging. This review article highlights our current knowledge on sirtuins in stem cells, including their functions in pluripotent stem cells, embryogenesis, and development as well as their roles in adult stem cell maintenance, regeneration, and aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.