Abstract

Aims: Apoptosis plays a critical role in cardiomyocyte loss during ischaemic heart injury. A detailed understanding of the mechanism involved has a substantial impact on the optimization and development of treatment strategies. Here, we report that the expression of SIRT4, a mitochondrial sirtuin, is markedly down-regulated in hypoxia-induced apoptosis of H9c2 cardiomyoblast cells. Methods and Results: SIRT4 interference significantly alters H9c2 cell viability, apoptotic cell number and caspase-3/7 activity. Furthermore, SIRT4 expression can affect the ratio of pro-caspase 9/caspase 9 or pro-caspase 3/caspase 3, an affect Bax translocation, which in turn alters the development of H9c2 cell apoptosis. Conclusion: These results suggest that SIRT4 is a key player in hypoxia-induced cardiomyocyte apoptosis, and that strategies based on its enhancement might be of benefit in the treatment of ischaemic heart disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call