Abstract

Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) and may influence renal graft survival. In this study, we investigate the involvement of SIRT3 and DRP1 in mitochondrial autophagy and AKI in a mouse model of IRI. Autophagy was detected in the absence of SIRT3, and hypoxic reoxygenation (H/R) experiments using renal tubular epithelial cells NRK52E were performed in vitro to validate these results. We found that autophagosomes increased following IRI and that the expression of autophagy-related genes was up-regulated. The inhibition of autophagy with 3-methyladenine exacerbated IRI, whereas the DRP1 inhibitor Mdivi-1 reversed this inhibition. Mdivi-1 did not reverse the inhibition of autophagy in the absence of SIRT3. During IRI, Mdivi-1 reduced autophagy and DRP1 expression, whereas SIRT3 overexpression attenuated this condition. Rescue experiment showed that autophagy was increased when both SIRT3 or DRP1 were over- or under-expressed or just DRP1 was under-expressed but expression was reduced when just SIRT3 was under-expressed. However, the expression of DRP1-related molecules was reduced when SIRT3 was overexpressed and when DRP1 was under-expressed. Taken together, these findings indicate that SIRT3 protects against kidney damage from IRI by modulating the DRP1 pathway to induce mitochondrial autophagy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.