Abstract

Oxidative stress is important for the calcium oxalate (CaOx)-induced kidney stone formation. Sirtuin 3 (SIRT3) plays an essential role in the amelioration of oxidative damages. This study aims to explore the effect of SIRT3 on the formation of CaOx-induced kidney stones and the underlying mechanism. SIRT3 expression in renal tissues was detected by immunohistochemistry. Apoptosis in renal tissues was examined by TUNEL staining. Crystal-cell adherence and cell apoptosis in HK-2 cells were assessed by analyzing Ca2+ concentration and by the flow cytometry analysis, respectively. Protein expression of SIRT3, nuclear factor erythroid 2-related factor (NRF2), heme oxygenase-1 (HO-1), and Bax in renal tissues or HK-2 cells was examined by Western blot analysis. Renal pathological changes and the adhesion of CaOx crystals in the kidneys were examined by hematoxylin-eosin and von Kossa staining, respectively. Human kidneys with stones showed enhanced renal apoptosis, downregulated SIRT3 expression, and upregulated NRF2/HO-1 expression, compared with the controls. Furthermore, SIRT3 overexpression inhibited the CaOx-induced promotion of crystal-cell adherence and cell apoptosis in human proximal tubular cell line HK-2 cells, which was reversed by the NRF2 knockdown. Moreover, our in vivo assay further confirmed that SIRT3 overexpression alleviated the glyoxylate administration-induced renal damage, renal apoptosis, and crystals deposition in the kidneys from the stone model mice, which was also associated with its activation of the NRF2/HO-1 pathway. Our findings support the notion that overexpression of SIRT3 may inhibit the formation of CaOx-induced kidney stones, at least in part, through regulating the NRF2/HO-1 signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call