Abstract

Honokiol (poly-phenolic lignan from Magnolia grandiflora) is a Sirtuin-3 (SIRT3) activator which exhibit antioxidant activity and augment mitochondrial functions in several experimental models. Modern evidence suggests the critical role of SIRT3 in the progression of several metabolic and neurodegenerative diseases. Amyloid beta (Aβ), the precursor to extracellular senile plaques, accumulates in the brains of patients with Alzheimer’s disease (AD) and is related to the development of cognitive impairment and neuronal cell death. Aβ is generated from amyloid-β precursor protein (APP) through sequential cleavages, first by β-secretase and then by γ-secretase. Drugs modulating this pathway are believed to be one of the most promising strategies for AD treatment. In the present study, we found that Honokiol significantly enhanced SIRT3 expression, reduced reactive oxygen species generation and lipid peroxidation, enhanced antioxidant activities, and mitochondrial function thereby reducing Aβ and sAPPβ levels in Chinese Hamster Ovarian (CHO) cells (carrying the amyloid precursor protein-APP and Presenilin PS1 mutation). Mechanistic studies revealed that Honokiol affects neither protein levels of APP nor α-secretase activity. In contrast, Honokiol increased the expression of AMPK, CREB, and PGC-1α, thereby inhibiting β-secretase activity leading to reduced Aβ levels. These results suggest that Honokiol is an activator of SIRT3 capable of improving antioxidant activity, mitochondrial energy regulation, while decreasing Aβ, thereby indicating it to be a lead compound for AD drug development.

Highlights

  • Alzheimer’s disease is a neurodegenerative disease characterized by a decline in cognition due to morphological and functional alterations to neurons

  • Because β-secretase-mediated amyloid-β precursor protein (APP) processing is the first step leading to Amyloid Beta (Aβ) generation, we studied whether Honokiol affects β-secretase

  • We report that Honokiol, an activator of SIRT3 attenuated oxidative stress and beta amyloid secretion in PS70 cells, in addition to improving mitochondrial function

Read more

Summary

Introduction

Alzheimer’s disease is a neurodegenerative disease characterized by a decline in cognition due to morphological and functional alterations to neurons. It is characterized by abnormal accumulation of extracellular senile plaques consisting of amyloid beta (Aβ), and intracellular neurofibrillary tangles consisting of hyperphosphorylated tau protein [1]. Epidemiological evidence shows that patients with type 2 diabetes mellitus have an increased risk of developing Alzheimer’s disease. This can be attributed to altered glucose metabolism, impaired insulin signaling, and insulin resistance [2,3,4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call