Abstract

We have found that Fas/FasL-mediated "extrinsic" pathway promoted cell apoptosis induced by renal ischemic injury. This study is to elucidate the upstream mechanism regulating FasL-induced extrinsic pathway during renal ischemia/reperfusion. Results demonstrated that when SIRT2 was activated by renal ischemia/reperfusion, activated SIRT2 could bind to and deacetylate FOXO3a, promoting FOXO3a nuclear translocation which resulted in an increase of nuclear FOXO3a along with FasL expression and activation of caspase8 and caspase3, triggering cell apoptosis during renal ischemia/reperfusion. The administration of SIRT2 inhibitor AGK2 prior to renal ischemia decreased significantly the number of apoptotic renal tubular cells and alleviated ultrastructure injury. These results indicate that inhibition of FOXO3a deacetylation might be a promising therapeutic approach for renal ischemia /reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.